A role for Q/N-rich aggregation-prone regions in P-body localization
نویسندگان
چکیده
منابع مشابه
A role for Q/N-rich aggregation-prone regions in P-body localization.
P-bodies are cytoplasmic foci that are sites of mRNA degradation and translational repression. It is not known what causes the accumulation of RNA-degradation factors in P-bodies, although RNA is required. The yeast Lsm1-7p complex (comprising Lsm1p to Lsm7p) is recruited to P-bodies under certain stress conditions. It is required for efficient decapping and degradation of mRNAs, but not for th...
متن کاملPrediction of aggregation-prone regions in structured proteins.
We present a method for predicting the regions of the sequences of peptides and proteins that are most important in promoting their aggregation and amyloid formation. The method extends previous approaches by allowing such predictions to be carried out for conditions under which the molecules concerned can be folded or contain a significant degree of persistent structure. In order to achieve th...
متن کاملAggregation-Prone Proteins Modulate Huntingtin Inclusion Body Formation in Yeast
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin (HTT) protein. The expression of mutant HTT in the baker's yeast Saccharomyces cerevisiae recapitulates many of the cellular phenotypes observed in mammalian HD models. Mutant HTT aggregation and toxicity in yeast is influenced by the presence of the Rnq1p and Sup35p prions, as ...
متن کاملUPF1 P-body localization.
NMD (nonsense-mediated mRNA decay) is a mechanism that degrades transcripts containing PTCs (premature translation termination codons). NMD is a translation-associated process that is expected to take place throughout the cytoplasm. However, recent studies have indicated that the core NMD factors UPF1 (up-frameshift-1), UPF2 and UPF3 can associate with P-bodies (processing bodies), which are la...
متن کاملIntrinsically Disordered and Aggregation Prone Regions Underlie β-Aggregation in S100 Proteins
S100 proteins are small dimeric calcium-binding proteins which control cell cycle, growth and differentiation via interactions with different target proteins. Intrinsic disorder is a hallmark among many signaling proteins and S100 proteins have been proposed to contain disorder-prone regions. Interestingly, some S100 proteins also form amyloids: S100A8/A9 forms fibrils in prostatic inclusions a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Cell Science
سال: 2008
ISSN: 1477-9137,0021-9533
DOI: 10.1242/jcs.024976